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NResults from an exact analytical solution for the field in a wedge with pressure-release

boundaries (benchmark problem I ) are presented in the form of transmission loss as a
function of horizontal range from the source. These computed curves contain no significant
error, and thus may be used as a primary benchmark for establishing the accuracy of range-
dependent, numerical propagation models.
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INTRODUCTION ............ -_ , , The procedure used to obtain an expression for the field

, Oxer the past decade or so. several computer codes have is to apply two integral transforms to the inhomogeneous

been developed for calculating the sound field in complex Helmholtz equation, a finite Fourier sine transform, and a

underwater environments. These algorithms are based on Hankel transform. On taking the inverse transforms, the \e-

numerical solutions of the wNave equation (or related equa- locitV potential is found to be the follMing sum of uncou-

tions) and are very complicated, generally requiring long pled normal modes:

run times to arrive at a final estimate of the field. Most, if not ? I
all. of these codes are based on sone more or lesssubtle form T = -Y I, (r.r')sin(v)sin(10'). (1)
ofz'pproxinmat ion. After many hours of CPU time, when theem fortlie fe i \ pro Uce me, tevi t where 0,, is the wedge angle, r and r' are the ranges of the

final . the question receiver and source from the apex of the wedge. 0 and 0 are
ably arises: flow accurate is the result'.) . the angular depths of the receiver and source measured

There is no simple answer to this enquiry because, for about the apex, and
most range-dependent ocean channels, no reference solition
exists, This problem has been recognized by the ocean acous- 2 = (2)

tics comuniity for sonie time, and was addressed recently in The mode coefficients in Eq. ( 1 ) are
two -'benchmark" sessions at consecutive meetings of the
Acoustical Society of America. At the first of these meetings. I, (r.r') = , J, (pr)J, (pr')dp, (3)
three range-dependent problems wvere specified. bench- p- k-

marks I. 2. and 3. to be used as test cases for comparing the where k is the wavenumber of the source radiation and J,
various propagation models, one with another.,The details of is a Bessel function of the first kind oforder v. The integral in
these three problems are given by Jensen and Ferla' in this Eq. (3) is Hankel's discontinuous integral. which is equal to
issue of tile Journal oJ'th'/icous1tical Society o'.h'Wrica. the product of a Bessel function arid a Hankel function.'

The purpose of this par- is to present an analytical When this result is substituted into Eq. (I). the final expres-
solution for benchmark problem I, which is the two-dirlcn- ,, sion for the field is found to be

),ional, "'ideal" ,vedge problem: The acoustic field is required
in a wcdge. with pressure-release boundaries, \which coti-
tains a line source parallel to the apex. This is one of the few
range-dependent problems with an exact analytical solution. ---- r ---
The form of this solution is outlined below, and transmission z-R.
loss results evaluated from it arc given graphically. Com- R
ments are included about the evaluation procedure and the
care that was exercised to eliminate errors.

I. THE ANALYTICAL SOLUTION

Figure I shows the geometry of the wedge and the cyhn-
drical coordinates used in the analysis. The medium sup-

porting the field is a homogeneous fluid, the line source is Ill; I ti'ir( c,, i t"e ircc. , indt c'I itl. R , . iii teldeal \ ,dge'.

parallel to the apex. and the boundaries are plane, pressure- I Is ".mit l the , iciie hoiv\\en % el il ies ,,otl i li

release surfaces. ci is R
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of values, including (x,i) =(1,20), (2,30), (5,50),
ir, J,(kr. (10,50), (40,50), (50,50), (50,100), and (100,100), and

found exact agreement. We also tested the Debye asymptotic
Xsin(vO)sin(vO'), (4) expansions for large v (Eqs. 9.3.7 and 9.3.8 in Abramowitz

where r =min(r,r'),r, = max(r,r'),i=(- I) k/, and and Steguns), using only the first two terms, and found very
H " ( ) is the Hankel function of the first kind of order v. good agreement (to three significant figures) with the corre-

The expression for the velocity potential in Eq. (4) is sponding tabulated values in Ref. 5. The latter checks were
exact and valid for all wedge angles (i.e., it is not restricted to performed because, when the value of Y, dropped below
wedge angles that are submultiples of T-). Thus it includes - 10'', we switched from VAXMATH to Debye asympto-
the effect of diffraction by the apex of the wedge, as well as tics.
the image component of the field. In the benchmark problem, only odd-order modes are

For comparison with other solutions for the field in the excited, since the source is symmetrically placed in the chan-
wedge, the expression in Eq. (4) is to be normalized to the nel at middepth. Moreover, since kr'z400 and
field at I m from a line source in an unbounded homoge- v = (62.9 X mode number), we see that only modes 1, 3, and
neous medium. Now, the velocity potential of the field gen- 5 will propagate through the wedge. However, in the imme-
erated by a line source in an infinite medium is diate vicinity of the source, many more terms must be in-

ID(R) = (i/4)H,,(kR), (5) cluded in the mode sum to achieve acceptable accuracy. that
is, to give the correct nearfield behavior. We considered as

where R is the radial distance from the source to the field many as 1000 modes for field computations at the source
point and H I, "( ) is the Hankel function of the first kind of depth, in an attempt to examine nearfield and normalization
order zero. This result, which depends on just one spatial effects, but there was no perceptible difference between
coordinate R, is well known. One method of deriving it is to transmission loss (TL) curves, l- .d on a scale of 4
apply a Hankel transform to the Helmholtz equation, fol- dB/cm, based on sums containing 100 modes and 1000
lowed by the inverse transformation. Equation (5) repre- modes. Moreover, for R > 120 m (i.e., two wavelengths at 25
sents cylindrical spreading and shows a logarithmic singu- Hz), where R is the range from the source, these plots were
larity at the origin, R = 0. no different from a plot derived from a summation of only

With R set equal to I m, the normalized field in the five modes. Thus we feel confident that our results based on
wedge is sums of 100 modes contain no significant truncation errors.

A = I tP(r,r'0,0') /1q)( I) 1, (6)

and the transmission loss in dB is III. RESULTS
TL = 20 log,, (A). (7) Figure 2 shows the transmission loss calculated from

Eq. (7) for benchmark problem 1. TL is shown as a function
This expression was evaluated for a fixed receiver depth as a of horizontal range measured from the source of increments
function of horizontal range from the source to the apex. of 4 m, at a depth of 30 m. The field shows rapid spatial

II. THE COMPUTATIONS fluctuations at ranges up to 3.4 km, which is the cutoff range

Full details of the parameter values for benchmark (measured from the source) of the first mode. The structure

problem I are listed in Table I of Ref. 1, and the source/re- of these fluctuations changes at a range of 2.2 km. which is

ceiver configuration in the wedge is illustrated in Fig. I of the cutoff range of the third mode. Thus at ranges between

Ref. 1. Note that the sound speed of interest is c 1500 m/s. 2.2 and 3.4 km, only the first mode contributes to the field,

the frequency is 25 Hz. and the wedge angle is which shows a more regular structure than at shorter ranges,

Olt - arctan( 1/20) = 2.862 405'. The source is at a horizon- where two or more modes interfere.

tal range of 4 km froni the apex of the wedge, at a depth of In the region where only the first mode is present, the

1(X) m. This is midway down the water column, which is 2(X)
n deep at the source position......;,

Equation (7) was evaluated with these parameter val-
ties on a VAX 11/750 computer, using double precision , .,,,,

throughout, for I(XX) evenly spaced horizontal range points
at a depth ,of 30 m. A .landard Bessel function package I '[I !1 I" ! 'I
known as VAXMATHL (also known as SLATEC) and ' H '"
asymptolics were used to evaluate the Hankel and Bessel '
functions. With 1(X) modes in the summation for the field in
the wedge, the calculation of Ti- took less than 2 min. of
CPU time.

Computational difficulties can arise with the imaginary
part of the tlankel function I i.e., tlie Neumann function .7
Y, (x) I when the order v becomes large relative to the argu- I"

m en[ .: for a lixed value of x, Y, (x) . -i as 1 - _.. W e 1 1\\(.1 MIN I I tll I 1ke.
1:1 i 2. '1 ra i ioII lo~s it,

, 
;I t'initit)n or |loriionta I ranlge' h'roni I lie oulrcet.

tested the VAXMAT !1 calculations against tabulated re- ca1eltlled from E-q. ( 7 ) tr it rccei er depth of' 31 In a Itrequeyl of 25 11,
suits published oy Abramowitz and Stegun ' for a wide range and a wedge angle of 2 86 (leg.
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siopeldeg) = 256 the elliptic wave equation known as "COUPLE".9 It is for-
frqH)=25.

....c -rg(km) d,1,( ) 4,0. 100.
re- dem) - 30. mulated in terms of stepwise-coupled normal modes and is

999 range valid for a range-dependent, fluid medium. COUPLE is
CPU-time intensive, as illustrated by the comparative fig-

.. , ures in Table III of Ref. 1.
S ,,On comparing the results of COUPLE shown in Figs.

',I! ' 3(b) and 4 ofRef. 1 with our calculations of the field in the
ideal wedge, we see that there is excellent overall agreement.

The positions of the peaks and nulls are the same, with just a
slight occasional discrepancy between the height of interfer-
ence peaks of less than 1 d13. Moreover, the absolute levels of
the curves are in good agreement, to within a fraction of a

-dB. Since the ideal wedge problem is a particularly stringent
test of any numerical propagation code, this agreement with

1&\\(;;: FRO(Al l.IN.F S"M RU: (kil the exact analytical solution establishes COUPLE as a sec-
FIG. 3. Expanded %icv. of the transmission loss in Fig. 2. oer the range 0-1 ondary range-dependent benchmark. Thus COUPLE may
ki. be used for comparison with computationally efficient nu-

peaks and troughs in the field are due to intramode interfer- merical codes, such as those based on the parabolic equation,

ence. This phenomenon is characteristic of range-dependent to assess their accuracy in the context of realistic, range-

channels."' It arises because a mode consists of two field dependent ocean channels, where backscattering effects are

components, one traveling up slope and the other down negligible.

slope, which interfere to give the observed effect. At ranges In conclusion, although the analytical solution of the

greater than 3.4 km (i.e., close to the apex), there is essen- ideal wedge problem is not very realistic in terms of the com-

tially no energy in the field because the water depth at such plex ocean environment, it is extremely useful as a primary.

ranges is not sufficient to support even the lowest-order range-dependent benchmark. Since it is exact, it may be used

mode. (As it happens, the intercept of the 30-m depth line to establish the accuracy of a computationally demanding
with the bottom boundary of the wedge coincides with the numerical code, such as COUPLE. The latter may then be

cutoff range of the first mode. Thus the cutoff region is not used as a secondary benchmark against which other, less

depicted in Fig. 2. since at a range greater than 3.4 kin, the computationally intensive, algorithms can be tried and test-

receiver is outside the wedge domain.) ed in the context of realistic ocean channels.

Figure 3 shows an expanded view of the field in Fig. 2,
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ide-angle parabolic equation solutions to two range-dependent
e chmark problems

d J. Thomson
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Numerica olutions are presented to two benchmark problems involving acoustic propagation
in range-dep dent media. The two problems deal with: ( I ) upslope propagation in a wedge-

shaped channel ith a penetrable bottom, and (2) propagation in a plane-parallel waveguide
with a range-varyl sound-speed profile. The solutions are based on a pair of wide-angle,
variable-density, par olic equations, one of which is solved using a finite-difference algorit

while the other is solve using a split-step algorithm.

PACS numbers: 4 3.30.1p, 3.20.Mv

INTRODUCTION bolic equations th are more accurate than the standard

Two benchmark problems involving acoustic opaga- PE.16-2' At the s e time, advances omputer technology

tion in range-dependent media were recently propo d for have produced mailer and faster machines with which to

numerical consideration.' Numerical solutions to ese compute the oustic field. By 1984, the merging of PE soft-

problems were subsequently presented at a special session f ware with dicated hardware for generating and displaying

the 113th Meeting of the Acoustical Society of America. numeric E solutions had been effected.22 24 As a result of

Problem I dealt with upsiope propagation in a wedge-shaped these sware and hardware improvements, DREP has pro-

channel for: (a) a rigid and (b) a penetrable sloping-bottom Need with the development of a high-speed, stand-alone.

boundary. Problem II dealt with propagation in a plane- c uter and display system based on the PE model for

parallel waveguide with a range-dependent sounrd-speed ng sonar performance predictions at sea.25 The numeri-

profile. This paper presents numerical solutions to problems al soutions presented in this paper were obtained using a

1(b) and I I using a computer code based on a pair of wide- pair o variable-density, wide-angle, parabolic equations

angle. variable-density parabolic equations. that for he basis for this shipboard system.

The development and use of the parabolic equat n The re. of the paper is organized in the following way.

(PE) approximation in ocean acoustics is reviewed Ise- In th next s tion, a brief review of the approximations that

where. S Unlike the (elliptic) wave equation, p bolic underliethepa ofDREP parabolic equation codes is given.

equations contain only first derivatives in the range ariable, This is followed a simple error analysis that compares the

and so allow efficient numerical solution by niterative inherent accurac of the two wide-angle approximations.

marching techniques. This numerical advanta is achieved Section III contains he detailed split-step and finite-differ-

by (a) neglecting backscatter, and (b) limit g the angular ence numerical soluti ns to problems 1(b) and II. Finally.

aperture of the forward-scattered waves. B ause of (a), the the paper concludes w h a summary of the numerical re-

outgoing waves in a range-independent , veguide formally suits.

satisfy a single first-order equation con ining a square-root
operator. As a result of (b), different pproximations to this I. BASIC THEORY
operator give rise to different para 6ic equations. Let the region z > 0 (z p sitive down) of a cylindrical

The first numerical solution o the standard parabolic coordin, system (rOz) ntain an inhomogeneous
equation of ocean acoustics ap ared during 1973-1974 and oceanic wavcguide. ai d let p(r, exp( - i(t) represent the
were obtained using the spli step algorithm.'" Based on a azimuthally symmetric, time-ha onic acoustic field due to
presentation by F. D. Tap rta a split-step version was if apoint source located at r = 0, z -,. For r> 0, the pressure
plemented at DREP b 975 where it was used to assess p(r.z) satisfies the variable-density coustic wave equation
some bottom-limite propagation data provided by 2 stfi + aialed)
NUSC. "' When a ustic waves interact significantly with Vp + k (n2 + 2inc/k,)p - /p).Vp 0. (1)
the ocean botto however, the rapid variations in sound wheren(r,z) = c,/c(rz) isthe refracti index, c(r,z) isthe
speed and dens y can he accommodated more easily using sound speed, p(rz) is the densitx', and (r.z) <k,, is the ab-
fiitc-differe e methods." " For this reason, a finite-di'- sorption. Here k, = w/c is an arbitrary re ence wavenum-
ference ve ion was developed at DREP to accommodate ber.
the test ses examined at a PE workshop held in 1981.'" In regions where p is constant, the farfi d (k,,r> I

recent years, wide-angle approximations to the pressure can be determined by solving the "one-w "opera-
s re-root operator have been proposed that result in para- lor equation for the outgoing field 0,"'
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